5. The teacher of a class of 40 high school seniors is curious whether the mean Math SAT score µ for the population of all 40 students in his class is greater than 500 or not. To investigate this, he decides to test the hypotheses H0: µ = 500 Ha: µ & gt; 500 at level 0.05.

5. The teacher of a class of 40 high school seniors is curious whether the mean Math SAT score µ for the population of all 40 students in his class is greater than 500 or not. To investigate this, he decides to test the hypotheses
H0: µ = 500
Ha: µ & gt; 500
at level 0.05. To do so, he computes that average Math SAT score of all the students in his class and constructs a 95% confidence interval for the population mean. The mean Math SAT score of all the students was 502 and, assuming the standard deviation of the scores is α = 100, he finds the 95% confidence interval is 502 ± 31. He may conclude
a. H0 cannot be rejected at level α = 0.05 because 500 is within confidence interval.
b. H0 cannot be rejected at level α = 0.05, but this must be determined by carrying out the hypothesis test rather than using the confidence interval.
c. We can be certain that H0 is not true.

find the cost of your paper